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We calculate 800 coefficients of the high-temperature expansion of the magnetic 
susceptibility of Dyson's hierarchical model with a Landau-Ginzburg measure. 
Log-periodic corrections to the scaling laws appear as in the case of an Ising 
measure. The period of oscillation appears to be a universal quantity given in 
good approximation by the logarithm of the largest eigenvalue of the linearized 
RG transformation, in agreement with a possibility suggested by Wilson and 
developed by Niemeijer and van Leeuwen. We estimate y to be 1.300 (with a 
systematic error of the order of 0.002), in good agreement with the results 
obtained with other methods, such as the e-expansion. We briefly discuss the 
relationship between the oscillations and the zeros of the partition function near 
the critical point in the complex temperature plane. 

KEY WORDS: Renormalization group; critical exponents; hierarchical models; 
high-temperature expansion; Ising models; epsilon expansion. 

1. I N T R O D U C T I O N  

A possible way of testing our understanding of second-order phase trans- 
itions consists in calculating the critical exponents as accurately as possible. 
Ideally, one would like to use several independent methods and obtain an 
agreement within small errors. The renormalization group method ~1~ has 
provided several approximate methods to calculate the critical exponents of 
lattice models in various dimensions. On the other hand, the same expo- 
nents can be estimated from the analysis of high-temperature series. ~3'4~ 
Showing that these methods give precisely the same answers has been a 
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challenging problem. 2 In general, one would expect that a well-established 
discrepancy could either reveal new aspects of the critical behavior of the 
model considered or point out the inadequacy of some of the methods 
used. 

In order to carry through this program, one needs to overcome tech- 
nical difficulties which are specific to the methods used. An important 
problem with the high-temperature expansion ~6~ is that one needs much 
longer series than the ones available s (which do not go beyond order 25 in 
most of the cases) in order to make precise estimates. On the other hand, 
a problem specific to the renormalization group method is that the practi- 
cal implementation of the method usually requires projections into a 
manageable subset of parameters characterizing the interactions. 

It is nevertheless possible to design a nontrivial lattice model, c8~ 
referred to hereafter as Dyson's hierarchical model (in order to avoid 
confusion with other models also called "hierarchical"), which can be seen 
as an approximate version of nearest neighbor models and for which these 
two technical difficulties can be overcome. For Dyson's hierarchical model 
the renormalization group transformation reduces to a simple integral 
equation involving only the local measure. This simplicity allows one to 
control rigorously ~9~ the renormalization group transformation and to 
obtain accurate estimates of the eigenvalues of the linearized renormal- 
ization group transformationJ m~ More recently we have shown that the 
recursion formula can be put in a form ~E*" ,2) suitable for the calculation 
of the high-temperature expansion to very large order. Consequently, 
Dyson's hierarchical model is well suited to compare the e-expansion and 
the high-temperature expansion. Note that unlike the e-expansion, the 
high-temperature expansion depends on the choice of a local measure of 
integration for the spin variables (e.g., an Ising or Landau-Ginzburg  
measure). In order to make this choice explicit when necessary, we will, 
for instance, speak of Dyson's hierarchical Ising model if we are using 
an Ising measure. 

In a recent publication ~.2~ we reported results concerning the high- 
temperature expansion of Dyson's hierarchical Ising model. We found clear 
evidence for oscillations in the quantity used to estimate the critical expo- 
nent y, called the extrapolated slope (see Section 3). When using a log scale 
for the order in the high-temperature expansion these oscillations become 
regularly spaced. We provided two possible interpretations. The first is that 
the eigenvalues of the linearized renormalization group are complex. The 

-" There is a large amount of literature o11 this subject; [br references see, e.g., ref. 5. 
3 B. Nickel, private communication to A. Guunaann, reported in ref. 4, p. 9. For recent 
calculations see, e.g., refi 7. 
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second is that the eigenvalues stay real, but the constants appearing in the 
conventional parametrization of the magnetic susceptibility should be 
replaced by functions of fl , .-  fl invariant under the rescaling of f l , . -  fl by 
2t, the largest eigenvalue of the linearized renormalization group transfor- 
mation. Hereafter, we refer to this explanation as "the second possibility." 
This second possibility was mentioned twice by Wilson t~ and developed 
systematically by Niemeijer and van Leeuwen. I t3~ 

In ref. 12 we gave several arguments against the first possibility. A more 
convincing argument is given in Section 7: explicit calculations of the 
first 14 eigenvalues of the linearized renormalization group transformation 
not relying on the e or high-temperature expansion show no evidence for 
complex eigenvalues of the linearized transformation. In addition, all the 
results presented below support the second possibility. 

In this paper we report the results of calculations of the high-tem- 
perature expansion of the magnetic susceptibility of Dyson's hierarchical 
model up to order 800 with a Landau-Ginzburg measure. These calcula- 
tions provide good evidence that the oscillations appear with a universal 
frequency given by the second possibility t j' t31 discussed above, but with a 
measure-dependent phase and amplitude. Before going into the technical 
details related to the analysis of the series, we would like to state additional 
conclusions. First, we found no significant discrepancy between the high- 
temperature expansion and the e-expansion. Second, with the existing 
methods, the high-temperature expansion appears as a rather inefficient 
way to estimate the critical exponents of Dyson's hierarchical model. Third, 
the high-temperature expansion reveals small oscillatory corrections to the 
scaling laws which cannot be detected from the study of the linearized 
renormalization group transformation. 

These conclusions were reached after a rather lengthy analysis. The 
second possibility introduces potentially an infinite number of Fourier coef- 
ficients and it is useful to first work with simplified examples in order to 
develop a strategy to fit the data with as few unknown parameters as 
possible. Solvable models where the second possibility is realized were 
proposed in ref. 15. These models are sometimes called "Ising hierarchical 
lattice models" and should not be confused with Dyson models. Further 
analysis of these models shows that the zeros of the partition function in 
the complex, temperature plane are distributed on the (very decorative) 
Julia set ~6) of a rational transformation. In particular, it is possible to 
relate the oscillations to poles of the Mellin transform located away from 
the real axis at the ferromagnetic critical point. In addition, the calculation 
of the amplitude of oscillation for these models illustrates a feature which 
we believe is rather general, namely that the oscillations tend to "hide" 
themselves: large frequencies imply (exponentially) small amplitudes. 
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This paper is organized as follows. In Section 2 we specify the models 
considered and the methods used for the calculations. In Section 3 we 
explain how to estimate the critical exponent y using the so-called extra- 
polated slope. 161 We discuss the effects of the new oscillatory terms on this 
quantity, using assumptions which are motivated in subsequent sections. In 
Section 4 we show that despite a large amplification, the systematic and 
numerical errors on the coefficients play no role in our discussion of the 
oscillations of the extrapolated slope. This section also provides a test of 
our calculation method in an explicitly solvable case, namely Dyson's 
hierarchical Gaussian model. 

Inspired by the Ising hierarchical lattice models and the analytical 
form of the one-loop Feynman diagrams for Dyson's hierarchical model, 
we designed a simple mathematical function with a singularity corrected by 
log-periodic oscillations. This function is defined in Section 5. Its power 
singularity, as well as the frequency, amplitudes, and phases of oscillations, 
can be explicitly calculated. We then show that these quantities can be 
extracted in good approximation from a numerical analysis of the 
extrapolated slope associated with the Taylor expansion of the function 
about a nonsingular point. In Section 6 we apply the methods developed 
in Section 5 to fit the extrapolated slope associated with the various high- 
temperature expansions calculated. The analysis is complicated by the 
fact that the 1/m corrections to the large-m expansion, m being the order 
in the high-temperature expansion, are enhanced by a factor which is 
approximately 160. We start with five-parameter fits, which give robust 
values for the critical exponent y and the frequency of oscillation o9. From 
the study of the errors one can design fits with one or two more parameters 
which have smaller systematic errors and which are reasonably stable 
under small changes in the fitting interval or in the initial guesses for the 
values of the parameters. 

The results of the numerically stable fits are discussed in Section 7. 
The linear relation between 09 and y predicted by the second possibility 
is well obeyed and the value of y is in good agreement with the value 
obtained with the e-expansion, which we have checked using independent 
methods. All results agree within errors of the order 0.002. We have thus 
succeeded in finding a theoretical framework in which the new and existing 
results fit together. Many questions remain: What is the origin of the 
oscillation? Can we calculate the amplitudes of oscillation directly? Are 
similar phenomena present for models with nearest neighbor interactions? 
If the example of the solvable Ising hierarchical lattice models can be used 
as a guide, these questions require a better understanding of the suscep- 
tibility in the complex temperature plane. These questions are briefly dis- 
cussed in Section 8. In particular, we give preliminary results concerning 
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the zeros of the partition function in the complex temperature plane which 
suggests an accumulation of zeros near the critical point. 

2. RECURSIVE CALCULATION OF THE HIGH-TEMPERATURE 
EXPANSION 

In this section we describe Dyson's  hierarchical model and the methods 
used to calculate the high-temperature expansion of the magnetic suscep- 
tibility. The models considered here have 2" sites. Labeling the sites with n 
indices x ....... x~, each index being 0 or 1, we can write the Hamiltonian as 

(4), ( )2 E E ............. ,, 
I ~ 1 .x 'n  . . . . ,  .x '!  + I . x ' l  , . . . ,  . v  I 

(2.1) 

The free parameter  c which controls the strength of the interactions is set 
equal to 2 ~ -2/~ in order to approximate a nearest neighbor model in D 
dimensions. In this paper  we only consider the case D = 3. The spins 
a~.,. .......... ~ are integrated with a local measure which needs to be specified. In 
the following we consider the Ising measure, where the spins take only the 
values _ 1, and measures where the spin variables are integrated with a 
weight e x p ( - A a 2 - B a 4 ) ,  which we call Landau-Ginzburg  measures. In 
the particular case B = 0 we obtain a Gaussian measure. In the following 
we have used A = 1/2 with B = 0.1 or B = 1. 

The integrations can be performed iteratively using a recursion for- 
mula studied in ref. 9. Our  calculation uses the Fourier transform of this 
recursion formula with a rescaling of the spin variable appropriate to the 
study of the high-temperature fixed point, cHI It amounts to the repeated 
use of the recursion formula 

(2.2) 

which is expanded to the desired order in ft. 
The initial condition for the Ising measure chosen here is Ro = cos(k). 

For the Landau-Ginzburg  measure the coefficients in the k-expansion have 
been evaluated numerically. The constant Ct+, is adjusted in such a way 
that R/+ 1(0) = 1. After repeating this procedure n times we can extract the 
finite-volume magnetic susceptibility X,,(fl) = 1 + bl., , fl  + b2, ,,f12 + . . .  from 
the Taylor expansion of R,,(k) ,  which reads 1 - ( 1 / 2 ) k 2 z , , +  . . . .  This 
method has been presented for the Ising measure in ref. 11 and checked 
using results obtained with conventional graphical methods, t'7~ In the 
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calculations presented below we use n =  100, which corresponds to a 
number of sites larger than 1030 . The errors associated with the finite 
volume are negligible compared to the errors associated with numerical 
roundoffs, as explained in Section 4. 

3. THE EXTRAPOLATED SLOPE 

In order to estimate y, we will use a quantity called the extrapolated 
slope (s~ and denoted ~, , ,  hereafter. The justification for this will be made 
clear after we recall its definition. First, we define r,,, = b , , , / b  .... ~, the ratio 
of two successive coefficients. We then define the normalized slope S, , ,  and 
the extrapolated slope ~, , ,  as 

S , , ,  = - m ( m  - 1 ) ( r , , ,  - r . . . .  i ) / [ m r , , ,  - ( m  - 1 ) r , , , _  t ] 

~ , , , = m S , , , - ( r n - 1 ) S  . . . .  j 
(3.1) 

In the conventional description (~4~ of the renormalization group flow 
near a fixed point with only one eigenvalue 2( > 1 the magnetic suscep- 
tibility can be expressed as 

X = ( f l  - f l )  - ~' ( A o  + A , ( f l c -  f l ) A  + . . . ) (3.2) 

with d = lln(22)l/ln(2t) and 2_, being the largest of the remaining eigen- 
values. It is usually assumed that these eigenvalues are real. When this is 
the case, one finds ~6~ that 

~, , ,  = ), - I + B m  -"1 + O ( m  -2) (3.3) 

Remarkably, the 1/m corrections coming from analytic contributions 
have disappeared, justifying the choice of this quantity. Instead of this 
monotonic behavior, oscillations with a logarithmically increasing period 
were observed in ref. 12. Equation (3.3) was then used, allowing B and A 
to be complex and selecting the real part of the modified expression. This 
introduces two new parameters, and the parametrization of the 
extrapolated slope becomes 

,~,,, = y - -  I - -  a i m  -~"- cos(co In(m) + a3) (3.4) 

This parametrization allows one to obtain good-quality fits, provided that 
m is not too small. 

This parametrization is compatible with two interpretations. The first 
one is that the eigenvalues of the linearized renormalization group are 
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complex. We have given ~-~ several general arguments against this 
possibility and an explicit calculation reported in Section 6 makes this 
possibility quite implausible. The second possibility I '" ,3~ we have considered 
is that the eigenvalues stay real, but the constants Ao and A, in Eq. (3.2) are 
replaced by functions of tic-- fl invariant under the rescaling of t i c . -  fl by "a 
factor (2 , / ,  where l is any positive or negative integer. This invariance 
implies that these functions are periodic functions in l o g ( f l , . - f l )  with 
period log(2,) and can be expanded in integer powers of (flc-fl)~2'v~"~;"L 
Consequently, we have the Fourier expansion 

Y', a,,(A-P) (3.5) 

At this point we have no additional information about these Fourier 
coefficients and possible restrictive relations among them. In the solvable 
examples 1,5~ where the second possibility is realized the Fourier coefficients 
decrease exponentially with the mode number]  ~6~ namely [an[ oc e ..... .111, 
where 

co = 2re/In(A, ) (3.6) 

and u is a positive constant expected to be of order 1, but usually difficult 
to calculate. If a similar suppression occurs in the problem considered here, 
a truncation of the sum over the Fourier mode should provide acceptable 
approximations (see Section 5 for an example). 

If we consider the new parametrization of the susceptibility, with the 
constants replaced by sums over Fourier modes, we obtain a parametriza- 
tion of the HT coefficients as a linear combination of terms of the form 
(/~,.-fl)--. The asymptotic (at large m) form of the coefficients is obtained 
from 

. . . .  0 

(3.7) 

and the asymptotic form 

(z), . . . .  m-= ~{" z + z  2 2 z + 9 z ' - + l O z 3 + 3 z  4 

m ~(_--Z~i \ 1 +-~--m + 24m-" 

6z 2 + 17z 3 + 17z 4 + 7z s + z 6 "~ 
48m3 t- ... ) (3.8) 
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From this we obtain the following asymptotic form for the coefficients: 

b, ,=m y-'  ~. K~mU'{1 +[(~,+ilco)2-(~+ilw)]/2m+ ... } 
I E Z  

+m ~'-A-' ~ LtmU"{1 +[(y--A+ilco) 2 
I E Z  

-- (7-- ,4 + ilco)]/2m + ... } + .. .  (3.9) 

where the K t and L~ are (unknown) coefficients proportional to the 
(unknown) Fourier coefficients. In the following we consider the case of 
truncated Fourier series where only Ko, K_+~, and Lo are nonzero. 
Plugging (3.9) into (3.1), expanding up to first order in K~/Ko, Lo, and 
l/m, and neglecting terms of order Lo/m, we obtain 

~,,, = ) , -  1 + 2  Re[i(co + co 3) m~"Kj/Ko] 

+ Lom -A{ (,43 _ ,4) + 2 Re[ ('4 -- As _ ico 

+ 3i'42co + 3,4092 _/cos) m~,,,K~/Ko] } 

+ m - t  Re[(co 2 + 5ico-' - 2iyco 3 + 7094 - 2),094 -/o95) mi,,Kt/go] (3.10) 

From the solvable examples we expect that IK2/Ko[ should be of the same 
order as Igt/go 12. The corrections of this order to ~,,, read 

2Re[(2ico+8ico3) K2/Ko+(4ico3--ico)(K,/Ko) 2] (3.11) 

These corrections can be important at moderate 09 (see Section 5). Impor- 
tantly, we see that the 1/m terms have reappeared. In the case where co >> 1 
we see that all the oscillating terms are approximately in phase and propor- 
tional to Re[imi"K~/Ko]. In the large-co limit the llm corrections are 
enhanced by a factor co-" compared to the leading oscillating term. This 
feature will play an important role in the discussion of Section 6. 

Before discussing the fits of the numerical values of the extrapolated 
slope for the Ising and the Landau-Ginzburg cases we will first show that 
the errors made in the numerical calculations do not play any significant 
role and then discuss the fitting strategy with a solvable example. 

4. THE EFFECT OF VOLUME AND ROUNDOFF ERRORS 

In this section we discuss the errors made in the calculation of the 
coefficients and show that they have no relevant effect on the extrapolated 
slope for the discussion which follows. There are two sources of errors: 
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the numerical roundoffs and the finite number  of sites. We claim that with 
2 t~176 sites and D = 3 the finite-volume effects are several order of magnitude 
smaller than the roundoff errors. 

F rom Eq. (2.2) one sees that the leading volume dependence will 
decay like (c /2)" .  This observation can be substantiated by using exact 
results at finite volume ttTI for low-order coefficients or by displaying the 
values of higher order coefficients at successive iterations as in Fig. 1 of ref. 
11. In both cases we observe that the ( c /2 )"  law works remarkably well. 
For the calculations presented here we have used C = 2  I/3 (i.e., D = 3 )  and 
n = 100, which gives volume effects on the order of 10 -20 

On the other hand, the roundoff errors are expected to grow like the 
square root of the number  of arithmetical operations. In ref. 11 we 
estimated this number  as approximately n m  2 for a calculation up to order 
m in the high-temperature expansion with 2" sites. Assuming a typical 
roundoff error in double precision of the order of 10 -t7 and n =  100, we 
estimate that the error on the ruth coefficient will be of order m x 10 -t6 
(or, more conservatively, bounded by m x 10-'5).  We have verified this 
approximate law by calculating the coefficients using a rescaled tem- 
perature and undoing this rescaling after the calculation. We chose the 
rescaling factor to be 0.8482. The rescaled critical temperature is then 
approximately 1. This prevents the appearance of small numbers in the 
calculation. If  all the calculations could be performed exactly, we would 
obtain the same results as with the original method. However, for calcula- 
tions with finite precision the two calculations have independent roundoff 
errors. The difference between the coefficients obtained with the two proce- 
dures is shown in Fig. 1 and is compatible with the approximate law. From 
this we conclude that for m ~< 1000 the errors on the coefficients should not 
exceed 10 - t 2 

We are now left with the task of estimating the effects that the errors 
on the b,,, have on ~,,,. In general, ~,,, is a function of b .... b . . . .  ~, b . . . .  2, and 
b,,, 3. We will use the linear estimated error &~,, ,=ZJ=o. . . . .3  (O,~,,,/Ob . . . .  i) 
~b . . . .  ;. The derivatives of 5,,, with respect to these four variables are 
lengthy expressions which can be calculated from Eq. (3.1). The numerical 
values of these derivatives are shown in Fig. 2 for a Ising measure. Using 
an upper bound of 108 for the absolute value of the derivative and an 
upper bound of 10-t2 on the absolute value of the errors on the coef- 
ficients, we find that none of the four terms of ~ , , ,  should exceed 10 -4  in 
absolute value. Since the effects discussed later are typically on the order of 
0.1, such errors will not play any role in the following. 

We have found independent checks of our error estimates. First, the 
smoothness of the data for the ~,,, rules out numerical fluctuations which 
would be visible on graphs. The amount  of data for the calculations with 
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Fig. 1. Difference between the ~,,, calculated with the two procedures explained in the text. 
The solid line is m x  t0 -16 

a Landau-Ginzburg  measure allows a visual resolutin of the order between 
10 -3 and 10 -4. Second, we have calculated ~,,, in the Gaussian case where 
nonzero results are of purely numerical origin. The results are displayed in 
Fig. 3. They show that the numerical fluctuations for the Gaussian 
hierarchical model are smaller than 10 -7 for m ~< 200. This small number  
indicates that our previous estimates are conservative. 
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Fig.  3. ~,,, in the  G a u s s � 9  case.  

The calculation of the large m coefficients requires a lot of computing 
time. We found that using a truncation in the expansion in k at order 100 
could cut the computer time by a factor of order 100 while having very 
small effects on the values of the coefficients. If we plot the differences 
between the values obtained with the truncated and the regular methods, 
we obtain a graph very similar to Fig. 3. For m ~< 400 the differences are 
less than 4 x 10 -6, which is compatible with the numerical errors discussed 
above. The data for the Landau-Ginzburg case presented here have been 
calculated with the truncated method. 

5. D E V E L O P I N G  F I T T I N G  M E T H O D S ,  W I T H  A 
S I M P L E  E X A M P L E  

The form of the coefficients given in Eq. (3.5) involves an infinite 
number of parameters. In order to see how one can obtain reasonable 
approximations with a manageable number of unknown parameters, we 
will first consider a simple example. One of the simplest examples of a 
function with a singularity and a log-periodic behavior is given by 

B" 
G(x) = (5.1) 

,, = o 1 + A " x  

This example has been motivated by the calculations of refs. 16 and the 
form of the analytic expressions corresponding to one-loop Feynman 
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diagrams for the hierarchical model. For definiteness we shall only consider 
the case where A and B are real and A > B > 1. 

Picking an arbitrary positive value Xo and introducing a new variable 
fl = 1 - x / x  o, we obtain the "high-temperature expansion" 

G(x) = ~ b,,,fl'" (5.2) 
t~ = 0  

with coefficients 

B"A"'"x~' 
b,,,= (1 + A,,xo),,,+ t 

n ~ 0  

(5.3) 

The critical value of fl is 1 and is obtained by setting x = 0 in its definition. 
Using the Mellin transform technique discussed in refs. 16, we can 

rewrite 

G(x) = Grog(x) + Gsing(X) (5.4) 

with 

Greg(X) = ~, (--1)lx/(l--BA") - 1  (5.5) 
/ = 0  

and 

+ "Y- X - ip , ,~  

G~i,,g(x) =-~.~09 "'-" zr= _r~ sin(rc(a + ip~)) 

where we have used the notation 

(5.6) 

a = - -  
In B 
In A (5.7) 

and 

27T 
~o - ( 5 . 8 )  

In A 

The complex part of the exponents comes from the fact that the Mellin 
transform of G(x) has poles away from the real axis. Substituting 
( t i c - P )  x0 for x and considering a as a critical exponent, the analogy with 
the original problem becomes clear. Neglecting the regular part in (5.4) and 
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proceeding as in Section 3, we obtain the asymptotic form of the coef- 
ficients as in (3.9), with y replaced by a, L I = 0 ,  and 

x ~  (5.9) 
Kl = F(a + io91) sin(n(a + io91) ) 

For large I/l, the magnitude of the coefficients decreases like 
[exp(-�89 ~/2-'. One sees that fast oscillations have small 
amplitudes and vice versa. This makes the oscillations hard to observe. In 
order to get an idea of how to obtain suitable truncations of the expansion 
given in Eq. (3.5), we have selected the values A- -3 ,  B =  10, and Xo= 1 
and calculated the coefficients with the exact formula (5.3). The sums were 
truncated in such a way that the remainder would be less than 10-J6, We 
then started fitting the corresponding ~,,, using Eq. (3.1). We first used a 
truncation where the Fourier modes with [/[ >/2 and corrections of order 
1/m 2 were dropped. We treated a, co, and the complex number K~/Ko as 
unknown coefficients and determined their values by minimizing the sum of 
the square of the errors with Powell's method. This allowed us to deter- 
mine the order of magnitude of co and a. Plotting the difference between the 
best fit and the exact values versus the logarithm of m shows oscillations 
twice as rapid as the oscillations in the fit. In other words, we needed the 
l =  +_ 2 terms. With these terms included and using the data for m ~> 30 we 
obtained o9=2.727 and a=0.4772,  in agreement with the exact values 
given by Eqs. (5.7) and (5.8), with three significant digits. The data and 
the fit are shown in Fig. 4. In this simple example we found that each 

0 100 200 300 400  500 600 700 800 
m 

Fig. 4. ,~,,, for the example of  Section 5 with A = 3, B = 10, and .,q, = I and the fit described 
in the text. 
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correction taken into account improved the quality of the fits. This is 
related to the fact that co takes a not too large value. As we now proceed 
to discuss, a substantially larger value of co implies a rather more com- 
plicated situation. 

6. F I T T I N G  T H E  E X T R A P O L A T E D  SLOPE 

We now discuss the fits of the extrapolated slope for Dyson's hier- 
archical model. The data are shown in Fig. 5 for the various measures 
considered. From the equally spaced oscillations in the In(m) variable one 
finds immediately that co is approximately 18. According to the exponential 
suppression hypothesis, this large value makes plausible that only the 
Fourier modes with Ill ~< 1 should be kept. This simplification unfortu- 
nately has the counterpart that for large co the 1/117 expansion is effectively 
an co2/m expansion, as explained at the end of Section 3. 

To be more specific, the relative strength of the leading oscillations 
and their 1/m corrections is approximately co2/(2m). For co = 18 this means 
that for m = 162 the leading term and the first corrections have the same 
weight. In the example considered in the previous section the critical value 
was m = 4 and good-quality fits in the asymptotic region required consider- 
ing the data for values of m larger than about ten times this critical 
value--which represents dropping only 5 % of the data. For the hierarchical 
model our data are limited to five times the critical value. Consequently, we 
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~,,, for the lsing model (crosses) and the Landau-Ginzburg model with B= 1 (circles) 
and B=0.1 (squares). 
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probably need about 2500 coefficients in order to get results as accurate as 
in the example of Section 5. Despite the fact that we do not expect 
Eq. (3.10) to be very accurate for the existing data, we will use an unbiased 
parametrization of the extrapolated slope which can be recast in the form 
(3.10) when some special constraints on the parameters are imposed. An 
unbiased parametrization of the form 

~,,, = y - 1 + a l t o  --2 cos(co In(m) + a3) -q- a j n  "'- + a5 cos(co In(m) + a6) 

+ a7 m - t  cos (co  In(m) + as) (6.1) 

gives very good quality fits provided that we disregard the low-m data (see 
below). An example of such a fit is displayed in Fig. 6. The difference 
between the data and the fit is barely visible for m >/100. For  m ~< 100, 
where we do not have any reason to believe in the validity of the 1/m 
expansion, the frequency is still well fitted, but not the amplitude. The 
assumption that only the Fourier modes with Ill ~< 1 should be retained can 
be checked explicitly from the fact that the differences between the fit 
and the data do not show more rapid oscillations (unlike in the previous 
section, where the I11 = 2 modes were important). 

We have tried to use the fits based on Eq. (6.1) to test the validity of 
the more restricted parametrization (3.10) obtained from the I / m  expan- 
sion. To be more specific, Eqs. (3.10) and (6.1) have two common 
parameters (y and co), while the eight a~, parameters of (6.1) are expressed 
in terms of one complex (K~/Ko)  and two real (A and Lo) parameters in 

cS 

rr~ 

0 100 200 300 400 500 600 700 800 

Fig. 6. .,~,,, for the Ising model and a ten-parameter fit. 
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Eq. (3.10). Consequently, Eq. (3.10) imposes four independent relations 
among the ap. In the limit of large co these relations are relatively simple: 
a3=a6=as ,  2a7-- --coZa 5, and aaas=ata2(1-a2,) .  We used the data for 
m > m,,~,, with ran, in larger than 200, and varied mini n and the initial values 
of the parameters. We found that for the fits based on Eq. (6.1), or their 
restriction to the case where all the phases of the oscillatory terms are 
taken equal, the values of the fitted parameters depend sensitively on the 
value of m,,~, and on the initial values. Sampling some of the many solu- 
tions, we found no indications that all the relations dictated by Eq. (3.10) 
were approximately obeyed. 

We have nevertheless been able to design a stable procedure with 
fewer parameters. To assess the stability, we vary m.,~. between 200 and 
400, keeping mma x at 800. The upper value of mmi n is chosen in such a way 
that we have at least two complete oscillations. We first set a4, as, and a 7 
equal to zero, which yields a parametrization of ~,,, as in Eq. (3.4). These 
restricted fits do not suffer from the sensitive dependence mentioned above. 
We then analyze the errors as a function of m. In all the cases considered 
the difference between the fit and the data is much smaller than the 
amplitude of the oscillations (for m >/200) and can be approximated by a 
constant plus a negative power of m. Putting together the fit of the 
extrapolated slope and the fit of the differences, we were able to obtain six- 
parameter fits with a good stability and small systematic errors in y. We 
now discuss the two cases separately. 

In the Ising case the decay of the oscillations controlled by m-"2 in the 
five-parameter fit and the decay of the errors are both approximately m-~ 
We thus decided to use Eq. (6.1) with as and a7 equal to zero (making a~ 
and a~ irrelevant). The six-parameter fits so obtained are then reasonably 
stable under small changes in mini. (see Figs. 8 and 9). Nevertheless, a 
systematic tendency can be observed: when mm~, is varied between 200 and 
400, a ,  evolves slowly from 0.67 to 0.57. It is conceivable that if we had 
data at larger m, a,_ would evolve toward its expected value 0.46. 

In the Landau-Ginzburg case the value of a2 obtained from the five- 
parameter fits is very small and the amplitude is in first approximation 
constant. We thus set a~ and a 7 equal to zero, while a 5 parametrizes the 
amplitude of the oscillations and a4 corrects the systematic errors. The 
power a2 does not have the smooth behavior under a change of mmi, it had 
in the Ising case; however, it does the job that it is required to do: the 
errors are small and do not show any kind of tilt or period doubling. These 
errors are displayed on Fig. 7. Their order of magnitude is 10--~, which can 
be used as a rough estimate of our systematic errors. Statistical errors due 
to the roundoff errors are visible on the right part of the graph and are 
clearly smaller by at least one order of magnitude. We now proceed to 



Dyson's Hierarchical Model 379 

tO-~ 

5 x f O  -4 

- 5 x 1 0  -4 

_ 1 0  -~ 
200  

Fig. 7. 
with ~,= 1.30137, 
a2 = 1.0589. 

A 

�9 ~. 
�9 ~ .  

i . . . .  i . . . .  i . . . .  i . . . .  i j I i I 
300  400  500  600  700  800  

TT~ 

Difference  be twee n  g,,, for  L a n d a u - G i n z b u r g  w i th  B =  1 a n d  the  fit g i v e n  by Eq. (6.1) 

~,~=17.716,  i l l = a T = 0 ,  a 5 = - 0 . 0 1 0 8 4 ,  a 6 = 0 . 3 3 6 7 ,  a 4 = 0 . 9 1 7 ,  a n d  

discuss the estimation of the most important quantities (~, and on) from 
these fits. 

7. E S T I M A T I O N  OF V A N D  to A N D  C O M P A R I S O N  W I T H  
EXISTING RESULTS 

The values of ~, as a function of rnmi n are displayed in Fig. 8. The mean 
values are 1.3023 in the Ising case and 1.2998 (1.2978) in the Landau-  
Ginzburg case with B =  1 (B=0.1) .  We conclude that y =  1.300 with a 
systematic error of the order of 0.002. As explained in the previous section, 
a precise estimation of the subleading exponents seems difficult. 

Our  results can be compared with those obtained from the 
e-expansion, I~~ namely 2~=1.427 and 22=0.85. These results imply 
),= 1.300 and zl = 0.46. We have checked these results with methods which 
do not rely on the e-expansion or expansions in the renormalized coupling 
constants. First, we have adapted a numerical method discussed in refs. 1 
and 2 to the case of the hierarchical model. We obtained 2~ = 1.426. 
Second, we have used a truncated and rescaled ~j~ version of Eq. (2.2) 
which corresponds to the usual renormalization group transformation. 
Using fixed values of beta and retaining only terms of order up to k 28 at 

822/87/I-2-26 
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each step of the calculation, we were able to determine the fixed point and 
the linearized renormalization group transformation in this 14-dimensional 
subspace. Diagonalizing this matrix, we found ,tt = 1.426 and 2 ,=0.853.  
The corresponding value of ), is 1.302. For  both methods the errors can be 
estimated by comparing the linearizations obtained for successive iterations 
near the fixed point. The order of magnitude of these errors is 0.001 in both 
cases. As a by-product we also found that all the other eigenvalues were 
(robustly) real, ruling out the possibility of complex eigenvalues. 

We now consider the values of a~. A distinct signature of the "second 
possibility" discussed in refs. 1, 13, 15, and 16 is the relation 

37~ 
co = ~ - ~  ~, (7.1) 

This relation is well-obeyed by the a priori  independent quantities used in 
the fits, as shown in Fig. 9. 

8. OPEN Q U E S T I O N S  A N D  C O N C L U S I O N S  

We have thus succeeded in finding a theoretical framework in which 
the new and existing results appear compatible within errors of the order 
of 0.002. In addition, we also have a qualitative understanding of the 
behavior of the extrapolated slope in the low-m region. Many questions 
remain to be answered. First, we would like to understand the origin of the 
oscillations. If the example of the solvable Ising hierarchical lattice models 
can be used as a guide, the oscillations are due to poles of the Mellin trans- 
form located away from the real axis. These poles are related to an 
accumulation of singularities at the critical point. We have tried to get 
an indication that a similar mechanism would be present for the models 
considered here. As a first step we have calculated the expansion of the 
partition function about fl=1.179, a good estimate ~tS~ of the critical 
temperature. We have carried the expansion up to order 10 for 2" sites 
with n = 6 - 1 2 .  The zeros are displayed in Fig. 10. It appears that the 
approximate half-circle on which they lie shrinks around the critical point 
when the volume increases. It is not clear that the polynomial expansion is 
a good approximation. This could in principle be checked by searching for 
the exact zeros. However, this is a much harder calculation because, due to 
the existence of couplings of different strengths, the partition function can- 
not be written as a polynomial in a single variable of the form e v/~. 

The existence of log-periodic corrections to a singular behavior seems 
to be a feature of hierarchically organized systems. Empirical observations 
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Fig. 10. The zeros of the partition function in the complex temperature plane, in the Ising 
case with from 26 to 2 ~2 sites. The origin on the graph represents the point f l=  1.179. The 
outer set of points (on an approximate ellipse) is for n = 6, the next set for n = 7, etc. 

of such a phenomena have been suggested as a possible way to predict the 
occurrence of earthquakes ~19) and stock market crashes. (2~ Are similar 
phenomena present for translationally invariant models with nearest 
neighbor interactions? Using the longest series available (6) for a nearest 
neighbor model, namely the two-dimensional Ising model on a square 
lattice, we found no clear evidence for regular log-periodic oscillations 
comparable to those seen in Fig. 6. However, the situation is complicated 
by the existence an antiferromagnetic point at fl = - t ic .  We used an Euler 
transformation as discussed in ref. 6 to eliminate this problem and found 
no indications of oscillations having a period that increases with m. On the 
other hand, the zeros of the partition function in the complex temperature 
plane have been studiedt2t) extensively. The zeros appear on two circles in 
the tanh(fl) plane, one of them going through the ferromagnetic critical 
point. Thus it seems incorrect to conclude that any accumulation of 
singularities will create oscillations. Approximate calculations of the Mellin 
transform of the susceptibility of the two-dimensional Ising model could 
shed some light on this question. 

We also would like to be able to calculate the amplitudes of oscillation 
with a method independent of the high-temperature expansion. As 
explained in the introduction, the study of the linearized renormalization 
group transformation does not provide any indications concerning the 
oscillations. Up to now the g l o b a l  properties of the flows are only accessible 
through numerical approaches. The results presented here should be seen 
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as an encouragement to develop and test global approaches to the renor- 
malization group flows. 
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